Propiedades funcionales de productos tradicionales congelados y secados al sol de oca (Oxalis tuberosa Molina) y olluco (Ullucus tuberosus Caldas): Una revisión


  • Roberto Carlos Chuquilín Goicochea Universidad Nacional de Huancavelica, Perú
  • Mónica Carolim Martínez Laurente Universidad Nacional de Huancavelica, Perú
  • Jesús Teodoro Rodrigo-Chumbes Universidad Nacional de Huancavelica, Perú


Palabras clave:

Capacidad antioxidante, antocianinas, betalaininas, ocatina, almidón, kaya, chullcce


El objetivo fue comprender la importancia de dos tubérculos andinos orgánicos como Oxalis tuberosa Molina y Ullucus tuberosus Caldas, en cuanto a sus componentes benéficos para la salud humana, así como darle un valor agregado mediante una técnica ancestral, llamada comúnmente “chuño”, conocidos como caya y chullce en la región Huancavelica. Se revisaron bases de datos Science direct, Taylor & Francis, Wiley, PubMed, Scielo y Alicia, con una antigüedad de 20 años. Los resultados más relevantes se sistematizaron en tablas y se analizaron para resaltar las cualidades que ambos tubérculos tienen como producto fresco y, las posibilidades que puedan tener al convertirlos en productos agroindustriales que retienen sus propiedades funcionales.


Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Roberto Carlos Chuquilín Goicochea, Universidad Nacional de Huancavelica, Perú

Mónica Carolim Martínez Laurente, Universidad Nacional de Huancavelica, Perú

Jesús Teodoro Rodrigo-Chumbes, Universidad Nacional de Huancavelica, Perú


Acurio Arcos, L. P., & Conrado Mora, K. M. (2018). Determinación de propiedades térmicas de oca (Oxalis tuberosa), jícama (Smallanthus sonchifolius), mashua (Tropaeolum tuberosum) y camote (Ipomoea batatas) (Universidad Técnica de Ambato). Recuperado de

Albihn, P. B. E., & Savage, G. P. (2001). The bioavailability of oxalate from oca (Oxalis tuberosa). Journal of Urology, 166(2), 420–422.

Alcalde-Eon, C., Saavedra, G., Pascual-Teresa, S. De, & Rivas-Gonzalo, J. C. (2004). Liquid chromatography-mass spectrometry identification of anthocyanins of isla oca (Oxalis tuberosa, Mol.) tubers. Journal of Chromatography A, 1054(1–2), 211–215.

Bimbo, F., Bonanno, A., Nocella, G., Viscecchia, R., Nardone, G., De Devitiis, B., & Carlucci, D. (2017, June 1). Consumers’ acceptance and preferences for nutrition-modified and functional dairy products: A systematic review. Appetite, Vol. 113, pp. 141–154.

Busch, J., Sangketkit, C., Savage, G., Martin, R., Halloy, S., & Deo, B. (2000). Nutritional analysis and sensory evaluation of ulluco (Ullucus tuberosus Loz) grown in New Zealand. Journal of the Science of Food and Agriculture, 80(15), 2232–2240. Retrieved from

Campos, D., Chirinos, R., Gálvez Ranilla, L., & Pedreschi, R. (2018). Bioactive Potential of Andean Fruits, Seeds, and Tubers. In Advances in Food and Nutrition Research (Vol. 84, pp. 287–343).

Campos, D., Noratto, G., Chirinos, R., Arbizu, C., Roca, W., & Cisneros-Zevallos, L. (2006). Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: native potato (Solanum sp.), mashua (Tropaeolum tuberosum Ruiz & Pavón), Oca (Oxalis tuberosa Molina) and ulluco (Ullucus tuberosus Caldas). Journal of the Science of Food and Agriculture, 86(10), 1481–1488.

Carvalho, A. de O., & Gomes, V. M. (2009, May). Plant defensins-Prospects for the biological functions and biotechnological properties. Peptides, Vol. 30, pp. 1007–1020.

Cecasem. (2010). Elaboración de kaya de oca. Recuperado de

Cejudo-Bastante, M. J., Hurtado, N., Mosquera, N., & Heredia, F. J. (2014). Potential use of new Colombian sources of betalains. Color stability of ulluco (Ullucus tuberosus) extracts under different pH and thermal conditions. Food Research International, 64, 465–471.

Chen, Y. F., Singh, J., Midgley, J., & Archer, R. (2020). Influence of time-temperature cycles on potato starch retrogradation in tuber and starch digestion in vitro. Food Hydrocolloids, 98, 105240.

Chirinos, R., Betalleluz-Pallardel, I., Huamán, A., Arbizu, C., Pedreschi, R., & Campos, D. (2009). HPLC-DAD characterisation of phenolic compounds from Andean oca (Oxalis tuberosa Mol.) tubers and their contribution to the antioxidant capacity. Food Chemistry, 113(4), 1243–1251.

Chirinos, R., Pedreschi, R., Rogez, H., Larondelle, Y., & Campos, D. (2013). Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties from the Peruvian Andean region. Industrial Crops and Products, 47, 145–152.

Cho, E. J., Yokozawa, T., Rhyu, D. Y., Kim, S. C., Shibahara, N., & Park, J. C. (2003). Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1,1-diphenyl-2-picrylhydrazyl radical. Phytomedicine, 10(6–7), 544–551.

Christiansen, J. (1977). The utilization of bitter potatoes to improve food production in high altitude of the tropics. Cornell University.

Cortés, M., Herrera, E., & Rodríguez, E. (2015). Optimización experimental del proceso de liofilización de uchuva adicionada con componentes activos por impregnación al vacío. Vitae, 22(1), 47–56. Recuperado de

de Haan, S., Burgos, G., Arcos, J., Ccanto, R., Scurrah, M., Salas, E., & Bonierbale, M. (2010). Traditional Processing of Black and White Chuño in the Peruvian Andes: Regional Variants and Effect on the Mineral Content of Native Potato Cultivars. Economic Botany, 64(3), 217–234.

Dini, A., Rastrelli, L., Saturnino, P., & Schettino, O. (1991). [Minor components in food plants--II. Triterpenoid saponins from Ullucus tuberosus]. Bollettino della Societa italiana di biologia sperimentale, 67(12), 1059–1065.

Espín, S, Brito, B., Villacrés, E., Rubio, A., Nieto, C., & Grijalva, J. (2001). Composición química, valor nutricional y usos potenciales de siete especies de raíces y tubérculos andinos. Acta Científica Ecuatoriana, 7(1), 49.

Espín, Susana, Villacrés, E., & Brito, B. (2014). Caracterización Físico-Química, Nutricional y Funcional de Raíces y Tubérculos Andinos. In Raíces y tubérculos andinos (pp. 13–23). Recuperado de

Euromonitor. (2016). New Approaches to Wellness and Global Market Impact. Euromonitor Internacional. Recuperado de

Flores, T., Alape-Girón, A., Flores-Díaz, M., & Flores, H. E. (2002). Ocatin. A novel tuber storage protein from the Andean tuber crop oca with antibacterial and antifungal activities. Plant Physiology, 128(4), 1291–1302.

Gandía-Herrero, F., Escribano, J., & García-Carmona, F. (2016). Biological Activities of Plant Pigments Betalains. Critical Reviews in Food Science and Nutrition, 56(6), 937–945.

Giusti, M., Polit, M. F., Ayvaz, H., Tay, D., & Manrique, I. (2014). Characterization and Quantitation of Anthocyanins and Other Phenolics in Native Andean Potatoes. Journal of Agricultural and Food Chemistry, 62(19), 4408–4416.

Gross, R., Koch, F., Malaga, I., de Miranda, A. F., Schoeneberger, H., & Trugo, L. C. (1989). Chemical composition and protein quality of some local Andean food sources. Food Chemistry, 34(1), 25–34.

Jung, M. J., Chung, H. Y., Choi, J. H., & Choi, J. S. (2003). Antioxidant Principles from the Needles of Red Pine, Pinus densiflora. Phytotherapy Research, 17(9), 1064–1068.

Keleman Saxena, A., Cadima Fuentes, X., Gonzales Herbas, R., & Humphries, D. L. (2016). Indigenous Food Systems and Climate Change: Impacts of Climatic Shifts on the Production and Processing of Native and Traditional Crops in the Bolivian Andes. Frontiers in Public Health, 4(March), 1–16.

Kim, H. R., Choi, S. J., Choi, H. D., Park, C. S., & Moon, T. W. (2020). Amylosucrase-modified waxy potato starches recrystallized with amylose: The role of amylopectin chain length in formation of low-digestible fractions. Food Chemistry, 318, 126490.

King, R. (1988). Mejoramiento de cultivos andinos, papa amarga, olluco, mashua y oca. Programa Interinstitucional de Papa.

Kraus, A., Annunziata, A., & Vecchio, R. (2017). Sociodemographic Factors Differentiating the Consumer and the Motivations for Functional Food Consumption. Journal of the American College of Nutrition, 36(2), 116–126.

Leterme, P., Buldgen, A., Estrada, F., & Londoño, A. M. (2006). Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia. Food Chemistry, 95(4), 644–652.

Manach, C., Milenkovic, D., Van de Wiele, T., Rodriguez-Mateos, A., de Roos, B., Garcia-Conesa, M. T., … Morand, C. (2017, June 1). Addressing the inter-individual variation in response to consumption of plant food bioactives: Towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Molecular Nutrition and Food Research, Vol. 61.

Márquez Mendoza, H. C. (2019). Composición nutricional y de mucílago de tres variedades de olluco (Ullucus tuberosus Loz.) para la obtención de chuño de olluco en el distrito de Santo Tomás - Cusco. Recuperado de

Mejía Lotero, F. M., Salcedo Gil, J. E., Vargas Londoño, S., Serna Jiménez, J. A., Torres Valenzuela, L. S., Mejía Lotero, F. M., … Torres Valenzuela, L. S. (2018). Capacidad antioxidante y antimicrobiana de tubérculos andinos (Tropaeolum tuberosum y Ullucus tuberosus). Revista U.D.C.A Actualidad & Divulgación Científica, 21(2), 449–456.

Montesano, D., Rocchetti, G., Putnik, P., & Lucini, L. (2018, August 1). Bioactive profile of pumpkin: an overview on terpenoids and their health-promoting properties. Current Opinion in Food Science, Vol. 22, pp. 81–87.

Morillo, A. C., Morillo, Y., & Leguizamo, M. F. (2019). Caracterización morfológica y molecular de Oxalis tuberosa Mol. en el departamento de Boyacá. Rev. Colomb. Biotecnol, 21(1), 18–28.

Ng, T. B., Liu, F., Lu, Y., Cheng, C. H. K., & Wang, Z. (2003). Antioxidant activity of compounds from the medicinal herb Aster tataricus. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 136(2), 109–115.

Pacheco, M. T., Escribano-Bailón, M. T., Moreno, F. J., Villamiel, M., & Dueñas, M. (2019). Determination by HPLC-DAD-ESI/MSn of phenolic compounds in Andean tubers grown in Ecuador. Journal of Food Composition and Analysis, 84, 103258.

Pacheco, M. T., Hernández-Hernández, O., Moreno, F. J., & Villamiel, M. (2020). Andean tubers grown in Ecuador: New sources of functional ingredients. Food Bioscience, 35, 100601.

Padayachee, A., Day, L., Howell, K., & Gidley, M. J. (2017). Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Critical Reviews in Food Science and Nutrition, 57(1), 59–81.

Paliwal, C., Ghosh, T., George, B., Pancha, I., Maurya, R., Chokshi, K., … Mishra, S. (2016). Microalgal carotenoids: Potential nutraceutical compounds with chemotaxonomic importance. Algal Research, 15, 24–31.

Peñarrieta, M., Alvarado, A., ?kessonb, B., & Bergenståhlc, B. (2005). Total antioxidant capacity in andean food species from Bolivia. Revista Boliviana de Química, 22(1), 89–93. Recuperado de

Peñarrieta, M., Salluca, T., Tejeda, L., Alvarado, A., & Bergenståhl, B. (2011). Changes in phenolic antioxidants during chuño production (traditional Andean freeze and sun-dried potato). Journal of Food Composition and Analysis, 24(4–5), 580–587.

Puhakka, R., Valve, R., & Sinkkonen, A. (2018). Older consumers’ perceptions of functional foods and non-edible health-enhancing innovations. International Journal of Consumer Studies, 42(1), 111–119.

Salas-Valerio, W., Solano-Cornejo, M., Zelada-Bazán, M., & Vidaurre-Ruiz, J. (2019). Three-dimensional modeling of heat transfer during freezing of suspended and in-contact-with-a-surface yellow potatoes and ullucus. Journal of Food Process Engineering, 42(6), 1–10.

Sellappan, S., Akoh, C. C., & Krewer, G. (2002). Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. Journal of Agricultural and Food Chemistry, 50(8), 2432–2438.

Sreeramulu, D., & Raghunath, M. (2010). Antioxidant activity and phenolic content of roots, tubers and vegetables commonly consumed in India. Food Research International, 43(4), 1017–1020.

Svenson, J., Smallfield, B. M., Joyce, N. I., Sansom, C. E., & Perry, N. B. (2008). Betalains in red and yellow varieties of the andean tuber crop ulluco (Ullucus tuberosus). Journal of Agricultural and Food Chemistry, 56(17), 7730–7737.

Tapia, M. (1990). Cultivos andinos subexplotados y su aporte a la alimentación. FAO.

Valcárcel-Yamani, B., Rondán-Sanabria, G. G., & Finardi-Filho, F. (2013). The physical, chemical and functional characterization of starches from andean tubers: Oca (Oxalis tuberosa molina), olluco (Ullucus tuberosus caldas) and mashua (Tropaeolum tuberosum ruiz & pavón). Brazilian Journal of Pharmaceutical Sciences, 49(3), 453–464.

Vera, N. G., Espino Manzano, S. O., & Hernandez, H. M. H. (2018). Use of Oxalis tuberosa in Gluten-free Baked Goods Manufacture. In Alternative and Replacement Foods (Vol. 17).

Werge, R. W. (1979). Potato processing in the central highlands of peru. Ecology of Food and Nutrition, 7(4), 229–234.

Zhu, F., & Cui, R. (2019). Comparison of molecular structure of oca (Oxalis tuberosa), potato, and maize starches. Food Chemistry, 296, 116–122.




Cómo citar

Chuquilín Goicochea, R. C., Martínez Laurente, M. C., & Rodrigo-Chumbes, J. T. . (2020). Propiedades funcionales de productos tradicionales congelados y secados al sol de oca (Oxalis tuberosa Molina) y olluco (Ullucus tuberosus Caldas): Una revisión. PURIQ, 2(3), 363-387.

Métricas alternativas

Artículos similares

También puede {advancedSearchLink} para este artículo.